
REAL-TIME PLANNING AND
INTELLIGENT CONTROL

By:

A.C. Sanderson
L.S. Homem de Mello

Department of Electrical, Computer and Systems Engineering
Department of Mechanical Engineering, Aeronautical

Engineering & Mechanics
Rensselaer Polytechnic Institute

Troy, New York 12180-3590

October 1988

CIRSSE Document #31

REAL-TIME PLANNING AND INTELLIGENT CONTROL

Arthur C. Sanderson

Electrical, Computer, and Systems Engineering Department,

Rensselaer Polytechnic Institute, Troy, NY 12180

Luiz S. Homem de Mello

Jet Propulsion Laboratory/California Institute of

Technology, Pasadena, CA 91109

NATO Advanced Research Workshop on Knowledge Based
Robot Control

October 10-12, 1988.

REAL-TIME PLANNING AND INTELLIGENT CONTROL

Arthur C. Sanderson

Electrical, Computer and Systems Engineering Department,

Rensselaer Polytechnic Institute, Troy, NY 12180

and

Luiz S. Homem de Mello

Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA 91109

ABSTRACT

Classical control systems utilize implicit analytical models and select inputs using nu-

merical computation in order to achieve desired plant performance in real time. Artificial

intelligence planning systems utilize explicit symbolic or logical models of discrete operations

and construct consistent planned sequences using symbolic reasoning to achieve specified task

goals. In the development of more complex intelligent systems, these two approaches must

interact in order to successfully execute real-time operations in a manner consistent with the

global goals and constraints of the task. Intelligent control and real-time planning are ap-

proaches to developing a theory and methodology for the design systems which incorporate

this interface. In this paper, we provide some examples of the role of task representation in

the definition of these control and planning strategies. We describe in detail some results on

task planning of assembly sequences and the use of precedence relations as an implicit model

of ordering constraints for assembly operations.

L INTRODUCTION

The development of increasingly complex machines and systems has focused attention on

principles of representation, planning, and control, and their implementation into architectures

which will support intelligent decision making and task execution behavior. The complexity

of such a system increases as the task transcends a single domain of sensing or action, and

it becomes necessary to construct representations combining elementary sensing and actions

into multiple levels of abstraction. Within this framework, a robot motion task such as "move

point a to point b" is a "simple" task in the sense that the decisions required to initiate and

execute the robot motion remain within the domain of the motion state space parameters.

While the required control algorithm necessary to execute the motion subject to disturbances

may be sophisticated, the formulation of the problem and the control algorithm remain within

a single representational domain.

Representation of the robot task "put the book ofa the table" transcends the motion space

domain of the robot. This task specification introduces objects, relations, constraints, and

1

assumptionswhichcannotbedirectlyrepresentedin themotionspaceof therobot. In thiscase,
a set of abstractions,usually representedby symbols,are introducedinto the representation
in order to adequatelydescribethe task and its relationship to the physical and geometric
stateof the system.In this case,bothsensingandactionsmust beexpressedin termsof this
abstractspace,and the planningof sequencesof correctandconsistentactionsbecomesthe
focus of the decision. The control of actionsin any single motion domain thenbecomesa
subsetof the plannedsequenceof actionsat themoreabstractlevel. This interfacebetween
the planningand control functions in a problem domain with hierarchical representation is

fundamental to the development of new generations of intelligent systems.

Intelligent systems make decisions about the actions which they undertake in order to

reach stated goals [1]. Such decisions can be made most effectively when a prediction of

the consequences of actions is available. The strength of classical control theory has been

the development of a methodology which uses analytical models of the dynamic behavior

of a plant in order to predict the consequences of control actions and therefore choose the

optimum inputs at any given moment. While such an analytical model may be used to

explicitly predict the outcome of actions, that is, to generate a predicted trajectory for the

plant, in classical control systems this analytical model is used implicitly rather than explicitly.

The analytical model of the plant is used as a basis to derive a controller algorithm which

directly computes new input actions which guarantee the outcome and performance of the

control system. The controller algorithm utilizes the plant model implicitly and executes the

numerical computations on-line in order to produce the correct inputs. Such an approach has

tremendous advantages for real time implementation since it guarantees optimality of the next

step input without exhaustive prediction of the trajectories.

Planning sequences of actions to accomplish predefined goals has been a topic of key

interest in the development of artificial intelligence problem solving techniques [2,3,4,5,6]. In

this literature, an action is represented by a symbol with specific preconditions defined for the

execution of the action and specific consequences of the action. In most of the AI literature on

domain independent planning, the state of the world has been defined by propositional logic,

and the pre- and post-conditions for actions have been specified in terms of the same logical

expressions. The key thrust of this work has been the formulation of the planning problem

as a search problem over the space of feasible action sequences. Much of this planning

work has recognized that real planning problems generate enormous search spaces and that

techniques such as subgoal generation, hierarchies, and nonlinear, or partially ordered, plans

may be necessary to make this search problem traceable. In practice many of these planning

techniques require the incorporation of heuristics in order to obtain solutions.

AI planning techniques are thought of as "intelligent" because they operate on an abstract

or global representation of the world. Based on such a global representation it should be

possible to reason about new or unpredicted situations in order to derive plans which were

not anticipated at the time of the formulation of the problem. While the availability of such a

global knowledge base does not guarantee intelligent behavior of the system, it suggests that an

appropriate planner with access to representation of the world at this level of abstraction should

be able to generate well developed plans for new situations. The heuristic search approach

to AI planning generates intelligent plans, that is, they incorporate global knowledge. This

approach also generates explicit plans. The resulting plan is an explicit sequence of actions

which has been tested in the search process for consistency and optimality based on a definition

2

of the current state and the goal state. Any change in the assumptions or constraints about

the problem will require a new search, sequence generation, and verification. Such explicit

plan generation is not conducive to real-time operation.

2. REAL-TIME PLANNING AND INTELLIGENT CONTROL

This incompatibility between the implicit, real-time, numerical control algorithm and

the explicit, off-line, symbolic planning algorithm has led to a fundamental dilemma in the

development of architectures for complex dynamic systems. This dilemma is illustrated in

Figure 1, which characterizes approaches to planning and control in complex systems. Two

different axes describe these approaches. The representation space of actions may be either

specific to an elementary action problem domain (local), such as robot morion, or may be

generalized to represent the abstract sets of actions in a global problem domain, such as in

robot object relationships and interactions. The representation of local or elementary actions

typically maps into a numeric description of a single well-defined state space. The global or

abstract actions typically map into symbolic or logical representations. An intelligent system

utilizes a predictive model of the world as a basis for decision-making about the sequence

of actions which it executes. This predictive model may be incorporated as an implicit part

of the decision-making algorithm, in which case the next action is chosen without explicit

generation of the full sequence of actions to the goal, or the predictive model may be explicit

in the decision-making algorithm, in which case the full sequence of actions is generated

each time a new plan is required.

The table shown in Figure 1 therefore defines a space for the categorization of approaches

to planning and control in complex systems. Classical, model-based control utilizes a numeric

representation of elementary actions in a weU-defined state space along with an implicit

model of the consequences of those actions in order to provide an efficient decision-making

algorithm which guarantees certain performance characteristics of the resulting system. On

the other hand, an AI planning system utilizes symbolic representation of global or abstract

actions and explicit search over possible sequences of actions as a decision-making tool in

the generation of plans.

The other two blocks in Figure 1 offer insight into the nature of the interaction between

planning and control concepts. The symbolic/implicit block defines a set of algorithms which

have been approached in two different ways. Work on intelligent control concepts is focused

on the extension of classical model based control to incorporate symbolic reasoning systems,

in order to make real time decisions among alternative control policies. Such a layered

intelligent control system has most often retained the implicit analytical model for elementary

actions and layered an explicit symbolic model, such as a rule-based system, which selects,

in real-time, alternative controUer policies based on current state information. The implicit

model is most often incorporated into a heuristic rule set which avoids the explicit generation

of plans, and the symbolic reasoning often choses among alternative control strategies rather

than discrete actions hoping to exploit the optimality offered by the implicit model in the
local domain.

Work on real-time planning has attempted to extend the AI approach to incorporate

3

IMPLICIT MODEL

EXPLICIT MODEL

NUMERIC
(Localor ElementaryAction

ProblemDomain)

Model-BasedControl

DynamicProgramming/
Simulation-basedControl

SYMBOLIC

(Global or Abstract Action

Domain)

Intelligent Control/

Real-time Planning

AI Planning

Figure 1 Approaches to planning and conlrol in complex systems.

reactive properties based on observation or sensing of current state information. Such a real-

time planning capability requires projection or prediction within the planner and monitoring

and matching of current state information relative to the predicted plan. In the simplest

case, discrepancy between the predicted plan and the observed system state requires complete

replanning from the new current state to the goal. More efficient approaches recognize classes

of disturbances (which might be specific to the problem domain) and permit reasoning about

alterations to the plan rather than complete sequence regeneration. Such a reactive planner

often works within the scope of a fixed projection length in the plan generation process. More

general plans and incomplete, skeletal, or partially ordered plans may be generated initially

and provide the global framework for implicit decisions about the execution of specific action

sequences.

The explicit/numeric block in Figure 1 is also of considerable interest. In conventional

terms one may think of a complex plant for which no adequate analytical model is available.

If a numerical simulation of the plant can be generated, then a controller over the elementary

actions or inputs to the plant might be developed based on the utilization of the simulation

tool as an explicit model of the consequences of input actions. Such an approach clearly

raises difficulties from a classical control standpoint since it is difficult to guarantee the

stability or other performance properties of the resulting system. A more common version

of this problem may be found in the classical dynamic programming approach to control.

In dynamic programming, given an explicit model of the state space, the control problem

is set up, the performance measures attached to each of the states, and control actions link

the states. The dynamic programming algorithm then provides an efficient means to search

for an optimal path among the alternative sequences of control actions. The properties of

the numerical search space permit the implementation of an efficient search algorithm which

minimizes back tracking and permits local decisions once the performance map over the state

©
START

I I
GOAL

Figure 2 Robot path planning task.

space has been generated. In addition, there exists a continuum of approaches which permit

this performance state space to be completely or partially generated using analytical model or

approximations and, therefore, combine the dynamic programming approach to search with
model based control.

The development of complex intelligent systems will require the linking together of

many of the techniques represented in Figure 1. In robot systems these issues arise at several

different levels. Kinematic and dynamic models form the basis for most robot motion control

algorithms. Their implicit models are available for the generation of the controller. When

the robot is integrated into more complex environments, the complexity of the disturbances,

the interpretation of sensing information, and the physical characteristics of the arm itself

may make it more difficult to analyze and develop pure model based control. An obstacle

avoidance task, such as that shown in Figure 2, is one example of this more complicated

environment. The task of the robot is to move from _oint START to point GOAL without

colliding with the obstacles. The local kinematic and dynamic characteristics of the robot are

known, and a controller for local path motion has been defined. Several different approaches

have been suggested in the literature to this type of problem. These distinct approaches
illustrate a number of the issues described above.

One strategy for this robot path planning problem might use a purely geometric search.

Random search on a grid of points will guarantee a solution and, given enough time, will

guarantee that an exhaustive search would yield an optimal solution. However, an analysis

of this search domain yields some insight into the nature of the paths which occur between

5

the initial point and the goal point. Normally, everyshortestpath trajectoryin this domain
must past througheither the initial point, the goal point, or one or moreof the verticesof
thepolygon shapedobstacles.This observationhasbeenusedextensively in the literature on

path planning among obstacles [7]. A solution such as shown in Figure 3, may be found by a

search over the much more modest space of alternatives exhibited by this so called visibility

graph. The resulting path is an explicit plan generated by a discrete search over the space of

alternatives. Any small change in the positions of the obstacles or the initial or goal points

would require complete replanning of the path in order to guarantee an optimal solution.

GOAL

START

Figure 3 Discrete search over feasible paths using the visibility graph.

A different representation of this problem space suggests an alternative approach to

solution. By considering the problem space as a continuous space in which obstacles are

regions to be avoided, one may develop potential function mapping algorithms which relate

the geometry of the configuration of the obstacles to a continuous function over the state

space. Such an approach has been generalized by Khatib [8] to consider motion and force

control of manipulators. A potential function representation shown in Figure 4 lends itself

to the generation of implicit rather than explicit control algorithms. An implicit a/gori_hm

which seeks an energy minimum at the goal point, yet avoids the energy maxima formed by

the obstacles, may be easily developed. Such a control algorithm decides on successive local

motions based only on the local model of the potential field. While the resulting path does

not guarantee the shortest path, the resulting paths may be adequate or even advantageous

in a dynamic or uncertain environment. In addition, changes in the environment may be

6

reflected in perturbations of the potential field and, therefore, re.,qui_ only local rather than

global recomputation in the field and no change at all in the implicit control algorithm.

An interesting combination of these algorithms is shown in Figure 5. In this approach, a

distance metric space field [9] is defined instead of the potential field shown previously. In

this approach, every point in the space is mapped into a continuous metric which corresponds

to the shortest distance between that point and the goal point. While this field itself is sensitive

to the positions of obstacles, the ability to compute such a field, using local parallel operators,

has significant advantages. The resulting controller algorithm is based only on local model

information, that is, a controller which follows the gradient of the distance metric space

will determine the shortest path between the initial point and the goal point. The resulting

optimal trajectory is therefore the same as that derived from the global path planner. This

distant metric space approach may be combined with the visibility graph to provide a real

time implicit controller which also has global knowledge of the line segment sequence which

constitutes the optima] path.

..; GOAL

.! ,,';';"!'"' .,' .,,'"""'""

°..'

..... • ,,.,.,.,.,, ,,.°'.'" ,,,

,,,'"

Figure 4 Potential field repels from obstacles and attracts to goal.

These examples of motion planning and path planning indicate some of the trade-offs

and alternative strategies which may be employed in approaching the same problem. Task

planning incorporates additional complexity into the problem because the specification of the

goal state itself is usually at a level of abstraction beyond the motion or kinematic description

of the robot. In such cases, the representation of the problem domain must incorporate

the decomposition of the task into elementary perceptions and actions. The planner then

7

Figure5 Distancemetricspacerepresentationpermitstrackingof
minimum distancepathusingimplicitalgorithmforlocalgradient.

must sequence these actions at the abstract level and coordinate the control and execution

of perceptions and actions at all levels. Such planned sequences of actions are most often

represented explicitly by the sequences themselves. The planning process generates a search

tree over the feasible states of the system, and a search algorithm operates on that state tree

in order to select desired sequences. The decomposition of the problem in the determination

of the nature and sizeof thissearch treeis a criticalfactorin the efficiencyof theplanning

process. In addition,itmay be possible to generatemore compact, implicit,representations

of feasibleaction sequences using eithermethods of finiteautomata models, grammars, or

precedence relations. Finiteautomata typicallycapture the statetransitioncharacteristics

which can describe the feasibleactionsequences. Equivalently such automata models can

be representedas formal grammars. Problcms which are restrictedto finitelengthsequences

often do not lend themselves to simple grammatical representations,and general prcccdcnce

relationsmay be more appropriate.In the next sectionwe summarize some resultson the

generationof prcccdcncc relationsas implicitrepresentationsof actionsequences forassembly

tasks.

3. PRECEDENCE RELATIONS FOR ASSEMBLY SEQUENCE PLANNING

In assembly task planning [10-15], a sequence of operations for parts and subassemblies

8

is generated. The most desirable assembly sequence may depend upon a variety of factors,

including the available resources, the t&ne cost of certain operations, or the reliability of the

operation itself. While alternative plans must be generated and evaluated in an off-line mode

for many manufacturing tasks, it is also common that real-time modification or replanning

must occur in order to effectively utilize manufacturing resources or to carry out operations

such as maintenance or repair of products. An implicit representation of plans is therefore

desirable for these types of applications.

An assembly sequence plan is a fixed length sequence, and may be represented either

by the sequence of assembly state partitions or 'by the sequence of pans connections. In

our work on assembly sequence planning [10-15], we have introduced the AND/OR graph

representation of assembly plans as an efficient representation of the feasible operation

sequences available to accomplish the assembly goal. We have shown that this AND/OR

graph representation is complete and correct based on the definition of feasibility tests used

in the generation algorithm and that this AND/OR graph is equivalent to the tree of assembly

states. We can utilize the AND/OR graph as a basis for the search over alternative feasible

assembly plans in order to chose the most desirable plan for a given application. However, the

AND/OR graph is an explicit representation of plans in the sense that replanning, in general,

requites a regeneration of the whole search process.

An alternative representation based on precedence relationships between operations may

be introduced and provides an implicit relationship of the sequential properties which are

characteristic of feasible assembly sequences for a given product [13,15,16,17]. While a set

of such precedence relationships may always be found as described below, the simplicity

of the representation depends strongly on the particular problem. An assembly with strong

sequential constraints will often result in a set of precedence relationships which constitute a

relatively simple set of implicit rules regarding the proper sequential ordering of operations.

However, an assembly without such strong constraints may produce a large set of precedence

relationships which become extremely cumbersome to evaluate on a real time basis.

For purposes of this discussion, we wiU consider an assembly to consist of a set of pans

with relationships defined by a graph of connections as shown in Figure 6. Each connection,

ci, indicates a set of real or virtual contacts between two pans. The assembly process then

consists of a series of operations which successfully form the connections shown in the graph

of connections subject to constraints imposed by the geometric and mechanical feasibility of

the operations together with the inherent constraints imposed by the simultaneous formation

of connections due to the assembly graph itself. The AND/OR graph of assembly plans for

this product is shown in Figure 7.

We will represent the state of the assembly process, si, by an L-dimensional binary vector

x = Ix1, x2 xt] in which the ith component xi is true or false, respectively if the ith

connection is established in that state or not. We will use the notation ci < cj to indicate the

fact that the establishment of connection ci must precede the establishment of connection c/.

We will use the notationci < c./ to indicate the fact that the establishment of connection ci

must precede or be simultaneous with the establishment of connection c/. Furthermore, we

will use a compact logical notation for logical combinations of precedence relationships; for

example, we will write cf< cj • ck when we mean (ci < c i) A (ci < ck) , and we will write

ci+cy < ck when we mean (ci < c,_) V (cj < ck) •

9

An assembly sequence whose representationas an ordered sequence of binaryvectorsis

x(.x2.,x__.,...,_ and whose representationas an ordered sequence of subsetsof connections

is('71,q'2,...,')'N-l)satisfiesthe precedence relationshipci < cj ffc_ E ":=,cj 6 %, and a <

b. Similarly,the sequence satisfiesc_ < cj ifc+ E 7a,cj 6 %, and a < b. For example, for

the assembly shown in figure6, the assembly sequence representationas an ordered sequence

of binary vectors is

mIClIFTAe.£dl

C 2
C 3

C 5

C 4

_DLE[

Figure6 Graph of connectionsforsimpleassemblyproduct.

([false,false,false,false,false]

[at=e,false,false,false,false]

[true,true,true,false,false]

[true,true,_e, true,u'ue]).

The corresponding representationas an ordered sequence of subsets of connections is(

{c_} {c2,c3} {c#,c5}) satisfiesthe precedence relationshipsc2 < c,#and c2 < c3 but does not

satsifythe precedence relationshipsc2 < c3 and c2 < ci.

10

Each feasible assembly sequence of a given assembly can be uniquely characterized

by a logical expression consisting of the conjunction of precedence relationships between

the establishment of one connection and the establishment of another connection. For

example, for the assembly shown in figure 6, the assembly sequence described in the

previous paragraph can be uniquely characterized by the following conjunction of precedence

relationships:(cl < c2) A (c2 < c3) A (c3 < c4) A (c4 < cs).

\

/

\
\
\

I

Figure 7 AND/OR graph representation or" feasible assembly plans for product in figure 6.

The set of M feasible assembly sequences can be uniquely characterized by a disjunction

of M conjunctions of precedence relationships in which each conjunction characterizes one

assembly sequence. Clearly, this logical combination of precedence relationships constituttes

a correct and complete representation for the set of all assembly sequences.

It is often possible to simplify this logical combination of precedence relationships

using the rules of boolean algebra. Further simplification is possible if one notices that

I1

As

simple

there are logicalcombinations of precedence relationshipsthat cannopt be satisfidby any

assembly sequence. For the assembly shown in figure I, for example, the combination

(Cl < c2)A (c2 < c4)A (c2 _<c3)A (c4 _<cs)^ (cs _<c4) cannot be satisfiedby any assembly

sequence. These combinations can be setas don't careconditionsin the simplificationof the

logicalcombination ifprecedence relationships.

Whenever the assembly has the two propertiesdescribed below, itispossibleto obtain

a simpler precedence relationship of all assembly sequences. This representation will be

obtained using the resultof Theorem I below.

The firstproperty _s:

Property 1: Given any two shams siand sj, not necessasrilyinthe same asscmbly

sequence,let7i and 7j be the setsof conncctionsthatareestablishedin assembly tasks

ri and rj from si and sj respectively.If

(P,Ci)is the share'sgraph of connections associatedto si ,

(P, Cj)is the state'sgraph of connections associatedto sj,

7i C__7j,

c_ Ci, and

rj is geometrically and mechanically feasible,

then

ri is geometricaLly and mechanically feasible.

This property corresponds to the fact that if it is geometrically and mechanically feasible

to establish a set of connections (Tj) when many other connections (Cj) have already

been established, then it is also geometrically and mechanically feasible to establish fewer

connections (7i C 7/) when fewer connections (Ci c Cj) have been established.Although

many common assemblies have thisproperty,thereare assemblies thatdon't have it.

The second property is:

Property 2: If the subsets 81, 82,....8t of the set of parts P characterizestable

subassemblies, then these subsets are also stablewithin the assembly characterized

by the set 8 = 81 U 82 U ...U Ot. That is,if allthe subassemblies are stable,then

the stabilityof the assembly is detcrmincd only by the stabilityof the connections

between subassemblies,and not within subassemblies.

in the case of Property 1, many common assemblies have this property, but there ate

examples which do not.

Theorem 1: Given an assembly made up of N parts whose graph of connections

is (P, C) (with C - [cl, c2 etA), let

{(711721...'7(/v-1)l),(7123'22...V(N-1)2.) ,..-,(71M_'2M...q'(tC-1)M)} be a set of

M ordered sequences of subsets of connections that represent feasible assembly

sequences. If the assembly has properties 1 and 2, then any ordered sequence of

N-1 subsets of connections that represents an assembly sequence corresponds to a

feasible assembly sequence if it satisfies the set of 2L precedence relationships:

M M

 T,i i=l,2,...,L a, a <_<¢i ci

j----1 j-_-I

i = 1, 2, ..., L

12

where

t, ck i f ck E Ttj and l > i
Tij = I_ Aik with Aik = {

k=l true otherwise

r. ek i f ck E AIj and l < i
tt_i = 1"_ A,k with A,k = {

/_=t true otherwise.

The sum and the product in this theorem are the logical operations OR and AND re-

spectively. Each term Tq (for i=1,2 ,L and for j=1,2 M) is the product of the variables

corresponding to the connections that are established at the same time or after the establish-

ment of connection ci in the jth sequence. Similarly, each term Hij is the product of the

variables corresponding to the connections that are established before the establishment of

connection ci in the jth sequence. Precedence relationships that have "true" on either side are

always satisfied. The proof of this theorem is presented elsewhere [13].

An example of the use of theorem 1 is based on the assembly in figure 6. This assembly

has both properties 1 and 2. For that assembly, the set of feasible sequences is:

({cx} {c=,c3}(c,,,c5})
((c2}{_4}{_1,c3,c5})
({_,_}(_2}{c_,_3,_5))

({CI} (C5}(C2,C3,C4})
({_3} (_1,C'.}(_'L,C5})

({C5}{C3,C4}{C1,C2})
({_5}{_1}(_-,,c3,c,,}_

Applying the result of theorem 1 to the above set of feasible sequences, the precedence

relationships having connection cl alone on one side are:

Cl <_ C2C3C4C5 4" C2¢3C4¢5 Jr- C3¢4C$ -}- C3C5 Jr" C2C4C5 q- C2 Jr- C3C5 q- C2 -}- C2C3C4 Jr- C2

and

true + true + c2c 3 Jr- c2c3c4c5 Jr" c2c3 Jr" c2c3c4c 5 q- c2c3c4c 5 Jr- c2c3c4c5 -}- c5 q- c2c3c4c$ <_ c I .

Using the rules of boolean algebra, these two precedence relationships can be simplified
yielding

cl <_ c2 + c3cs and true <_ ct.

The second precedence relationship is always satisfied and can be ignored. Similarly, the

result of theorem 1, simplifying the logical expressions, and deleting those precedence rela-

tionships that have "true" on either side, we obtain four additional precedence relationships.

The resulting set of precedence relationships is:

- 13

C1 _ C2 + C3C5 C2 <_ CI -}-C3¢4 C3 _ ¢IC5 -{-¢2C4 ¢4 <_ C5 + ¢2C3 C5 <_¢4 + ¢iC3•

This set of precedence relationsl_pscontorts redund_nces, and itcan be shown to be

• equivalent to:

c3 <_clcs + c2c4.

The precedence relations derived in this manner provide an implicit representation of the

ordering constraints imposed by the geometric and mechnical properites of the assembly. A

real-time planner can check the feasibility of a next step operation by testing against the prece-

dence relations rather than replanning the entire sequence or checking against an exhaustive

representation of plans. This approach provides one example of a plan representation derived

for a complex planning problem which yields a representation consistent with an implicit

decision-maker for real-time appLications.

ACKNOWLEDGEMENTS

Preparation of this paper was supported in part by the NASA Center for Intelligent

Systems for Space Exploration and in part by the New York State Center for Advanced

Technology in Automation and Robotics at Rensselaer Polytechnic Institute. The work on

precedence relations for assembly planning was supported by the Jet Propulsion Laboratory,

and results have appeared previously in [13].

REFERENCES

1. Saddis, G. N., "Toward the Realization of Intelligent Controls", Proc. of the IEEE 67

August, 1979.

2. Fikes, R., and N. Nilsson, "STRIPS: A New Application of Theorem Proving to Problem

Solving," Artificial Intelligence 2, pp. 189-208, 1972.

3. Sacerdoti, E.D., "Planning in a Hierarchy of Abstraction Spaces," Third International

Joint Conference on Artificial Intelligence, pp. 412--422, Stanford Research Institute

PubLications, 1973.

4. Wilkins, D., "Domain-independent Planning: Representation and Plan Generation," Arti-

ficial Intelligence 22 PP. 269-301, 1984.

5. Chapman, D., "Planning for Conjunctive Goais," Artificial Intelligence 32 pp. 333-377,

I987.

6. Koff, R.E., " Planning as Search: A Quantitative Approach", Artificial Intelligence 33

pp. 65-88, 1987.

7. Lozano-Perez, T., and M. W'csley, "An Algorithm for Planning Collision-FreePaths

Among Polyhedral Obstacles,"Comm. ACM 22 pp. 560-570, 1979.

14

8. Khatib, O., "A Unified Approach for Motion and Force Control of Robot Manipulators:

The Operational Space Formulation," IEEE Journal of Robotics and Automation RA-3,

1987.

9. Verbeek, P., L. Dorst, B. Verwer, and F. Grocn, "ColLision Avoidance and Path Finding

through Constrained Distance Transformation in Robot State Space", in Proc. Interna-

tional Intelligent Autonomous Systems Conference (L. Hertzberger and F. Groen, eds.),

pp. 627--634, Amsterdam, Netherlands, North Holland, December, 1986.

10. Homem de Mello, L. S., and A. C. Sanderson, "AND/OR Graph Representation of

Assembly Plans," Proc. of the Fifth National Conference on Artificial Intelligence AAAI-

86 pp. 1113--1119, Morgan Kaufman, 1986.

11. Homem de Mello, L. S., and A. C. Sanderson, "Task Planning and Control Synthesis

for Flexible Assembly Systems," in Machine Intelligence and Knowledge Engineering

for Robotic Applications NAT{) ASI Series, Vol. F33, Ed. A.K.C.Wong and A.Pugh,

Spdnger-Verlag, Berlin, 1987.

12. Homem de Meilo, L. S., and A. C. Sanderson, "Automatic Generation of Mechanical

Assembly Sequences," Technical Report CMU-RI-TR-88-19, The Robotics Institute,

Carnegie Mellon University, December, 1988.

13. Homem de Mello, L. S., and A. C. Sanderson, "Precedence Relationship Representations

of Mechanical Assembly Sequences," in Proc. 2nd NASA Workshop on Space Telerobotics

Pasadena, CA, January, 1989.

14. Homem de MeUo, L. S., and A. C. Sanderson, "A Correct and Complete Algorithm for

the Generation of Mechanical Assembly Sequences," IEEE Transactions on Robotics and

Automation, in press, 1989.

15. Homem de Mello, L. S., Task. Sequence Planning for Robotic Assembly, PhD Dissertation,

Electrical and Computer Engineering Department, Carnegie Mellon University, May,

1989.

16. Bourjault, A., Contribution a une Approche Methodologique de L'Assemblage Automatise:

Elaboration Automatique des Sequences Operatoires, These d'Etat, Universite de Franche-

Comte, Besancon, France, November, 1984.

17. DeFazio, T. L., and D. E. Whimey, "Simplified Generation of All Mechanical Assembly

Sequences", IEEE Journal of Robotics and Automation RA-3(6), pp. 640-658, December,

1987. See Corrections, same journal RA-4(6), pp. 705-708, December, 1988.

15

